
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, Jan. 2022                 245 
Copyright ⓒ 2022 KSII 

 
This work was supported by Natural Science Foundation of China (No.62062061), the Xizang Natural Science 
Foundation (XZ202001ZR0065G, XZ202101ZR0084G) 
 
http://doi.org/10.3837/tiis.2022.01.014                                                       ISSN : 1976-7277 

Application of YOLOv5 Neural Network 
Based on Improved Attention Mechanism 
in Recognition of Thangka Image Defects 

 
Yao Fan1, Yubo Li1*, Yingnan Shi1 and Shuaishuai Wang1 

1School of Information Engineering, Xizang Minzu University Xianyang 712082, China 
[e-mail: 93884969@qq.com, 1156760305@qq.com, 17610613383@163.com, 991248918@qq.com] 

*Corresponding author: Yubo Li 
 

Received September 23, 2021; revised December 2, 2021; accepted January 15, 2022;  
published January 31, 2022 

 

 
Abstract 

 
In response to problems such as insufficient extraction information, low detection accuracy, 
and frequent misdetection in the field of Thangka image defects, this paper proposes a 
YOLOv5 prediction algorithm fused with the attention mechanism. Firstly, the Backbone 
network is used for feature extraction, and the attention mechanism is fused to represent 
different features, so that the network can fully extract the texture and semantic features of the 
defect area. The extracted features are then weighted and fused, so as to reduce the loss of 
information. Next, the weighted fused features are transferred to the Neck network, the 
semantic features and texture features of different layers are fused by FPN, and the defect 
target is located more accurately by PAN. In the detection network, the CIOU loss function is 
used to replace the GIOU loss function to locate the image defect area quickly and accurately, 
generate the bounding box, and predict the defect category. The results show that compared 
with the original network, YOLOv5-SE and YOLOv5-CBAM achieve an improvement of 8.95% 
and 12.87% in detection accuracy respectively. The improved networks can identify the 
location and category of defects more accurately, and greatly improve the accuracy of defect 
detection of Thangka images. 
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1. Introduction 

Thangkas have been hailed as an “encyclopedia of Tibetan culture” since ancient times. 
Drawing on various cultures throughout the history, they have developed into a distinctive 
cultural and artistic form representing Tibetan Buddhism and the characteristics of the snowy 
plateau [1]. Because of the unique production process of Thangkas, they are usually fragile 
and difficult to preserve. Therefore, the protection of Thangkas is more of a work of restoration. 
At present, most of the restoration of intangible cultural heritage is completed manually, with 
a large number of experienced experts examining the defective cultural relics and delineating 
the damaged area more accurately to achieve better repair effect. However, this task sets 
extremely high requirements for the workers. First of all, they must possess adequate 
professional knowledge and solid hands-on ability. It is also necessary for them to have a broad 
understanding of history, culture, archaeology, fine arts, humanities, and other subjects. The 
inspection of cultural relics should be done with great care, and “secondary damage” should 
be avoided. These high requirements have led to a shortage of experts [2]. Therefore, using 
computer vision to protect cultural heritage has been an inevitable development trend. For 
effective conservation and restoration, more accurate detection of defective areas is important. 
Hence, it is necessary to propose a new method for the defect detection of cultural heritage. 

There has been a certain amount of research on detecting defective areas in China. Zhao 
et al. [3] proposed a defect detection framework based only on positive sample training. GAN 
and autoencoder were used to reconstruct the defective negative sample image, and LBP was 
used to compare the positive sample and the defect sample to detect the defect area of the cloth. 
This method only needs positive samples. Mei et al. [4] proposed an autoencoder network that 
used convolutional denoising on multiple Gaussian pyramid levels. It was applied to fabric 
defect detection and integrated with the detection results of the corresponding resolution 
channel. The reconstructed residuals were synthesized at each resolution level to generate the 
defect area. Zhang et al. [5] used Faster R-CNN and YOLOv3 to detect the aluminum defect 
data set, and applied it to the field of industrial models. Chen [6] used the YOLOv3 algorithm 
to identify five kinds of defects on the aircraft surface. Xu et al. [7] used the improved Mask 
R-CNN algorithm to detect tunnel defects, and endowed it with a path-enhanced feature 
pyramid network (PAFPN) and an edge detection branch. Wang et al. [8] proposed an 
improved Generative Adversarial Network (IGAN) method to detect machining surface 
defects. In this method, the Otsu algorithm was used to determine the residual image threshold 
and repair it, and then the input image was compared with the repaired image to obtain the 
defect area. Cha et al. used Faster R-CNN to detect images of edges and steel structures; this 
was the first time that Faster R-CNN had been applied to industry detection [9]. Tabernik et al. 
[10] proposed a deep learning system based on segmentation for detecting and segmenting 
defective areas on metal surfaces. This method can achieve a good detection effect even with 
a small number of defect samples [11]. 

With the development of deep learning technology in the field of computer vision, fruitful 
research results regarding defect detection have been achieved in recent years [12-17]. This 
paper applies the YOLOv5 network to the defect detection of Thangka images. It is found that 
the YOLOv5 network could not learn the characteristics of the defect area well for images 
with complex background color, and the detection results have shortcomings such as missed 
detection, false detection, and low detection accuracy. In order to solve the above problems, 
we propose an improved YOLOv5 algorithm based on attention mechanism to detect the defect 
of Thangka images with complex background color. This method not only improves the ability 
of the network to extract the texture and semantic features of the defect area, but also enables 
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the attention mechanism of the network fusion to play an effective role in detection. 
In summary, the main contributions of our work can be described as follows： 
(1) Since the original network cannot fully learn the characteristics of the defect area of 

the Thangka pictures with complex background color, the SE (Squeeze-and-
Excitation) mechanism is added after the output of Backbone, thus improving the 
feature learning ability of the network. 

(2) The CBAM (Convolutional Block Attention Mechanism) mechanism is introduced 
after the output of Backbone for more detailedly allocating and dealing with the defect 
area as well as fusing the features. The addition of CBAM to the Neck network further 
enhances the feature extraction and accuracy of the improved network.  

(3) The GIoU (Generalized-IoU) loss function of the YOLOv5 network is replaced with 
the CIoU (Complete-IoU) loss function. As a result, even if the detection box and the 
ground truth box overlap, the position information of the defect can still be effectively 
obtained and the convergence be accelerated. 

(4) While applying the algorithm to the defect detection of Thangka images, this paper 
improves its efficiency of detection and reduces the probability of loss caused by 
human factors. This provides a new technical route for defect detection of Thangka 
images and a novel idea for digital protection of cultural heritage. 

2. Network Framework 

2.1 Improved algorithm 
According to the features of Thangka images and the defect area and combined with the 
characteristics of the YOLOv5 network, the present paper proposed the YOLOv5 algorithm 
based on the attention mechanism. It mainly focused on the overall architecture design and 
optimization of the network, the improvement of the loss function, and the comparison with 
other networks. The problems of low accuracy and poor effect of defect detection were 
effectively solved, and the defect area of thangka images was identified more completely. Thus, 
the detection of Thangka image defects was completed successfully. 

2.1.1 Design and optimization of the overall network architecture 

The overall framework of the network is composed of Anchors, Backbone, Neck, and 
Prediction. In the input module, Mosaic data enhancement (random scaling, cropping, and 
arrangement for stitching), adaptive anchor box calculation, and adaptive image scaling were 
employed. Focus structure and BCSP structure were used in the Backbone module. The 
structure of FPN+PAN was adopted in the Neck module. Finally, the loss function of GIoU 
[18] was adopted in the Prediction module and NMS non-maximum suppression [19] was used 
to detect and classify targets. 

The overall architecture improved the design of the original network from two aspects. 
One was to import the SE module and optimize it by filtering the relationship between channels, 
so that the characteristics output by Backbone could be further optimized and purified. The 
second was to import the CBAM module and optimize the features output by Backbone using 
channel attention and then spatial attention. Such combination could increase the learning rate 
of the network, and then feature fusion was performed to reduce data loss. Next, the two 
modules were imported into the network architecture separately. 
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This paper set three anchors , and used heads with different scales to detect defect targets 
of different sizes. Specifically, class  is the number of target categories to be detected, p is the 
probability, s is the coordinate of the defect center and the length and width of the inspection 
box, and anchors  is the number of the inspection boxes. 

( )Channels class p s anchors= + + ⋅  (1) 

2.1.2 SE mechanism 

SE mechanism has a simple concept framework. The addition of SE does not need to change 
the overall framework of the network; it only needs to be added to the Backbone network. The 
idea of SE is to learn the correlation between channels [20]. The overall framework is shown 
in Fig. 1, where SE is in the red box. SE mainly explores the relationship between channels. 
Attention operations could be performed on its dimensions to make the network focus on the 
channel feature with the largest amount of information, suppress those unimportant channel 
features, reduce the computational load and complexity of the network, realize the adaptive 
selection of channel features, and model the selected relationships. Though the operating speed 
was decreased to some extent because adding the modules increased the depth and complexity 
of the network, its accuracy was improved dramatically. 

SE includes three operations: Squeeze, Excitation, and Reweight. The Squeeze operation 
was to compress the H×W×C input from Backbone through mean-pooling and max-pooling, 
make the output dimensions and the number of characteristic channels match with each other, 
and obtain the global receptive field. The Excitation operation generated weights for feature 
channels through parameters. The Reweight operation was to weight the weights generated by 
Excitation to previous features via multiplication and fuse them to complete the learning of 
features. 

The improvement made by this paper was reflected by the SE optimization of the features 
output by the network Backbone module, the addition of the SE mechanism to the Backbone 
module, and the deeper optimization learning performed on the features output by Backbone. 
In so doing, the network could better learn the defect features of the Thangka images with 
complex background color. 

The SE mechanism first performed a global mean-pooling on the feature map with the 
input dimension of H×W×C, so a 1×1×C global receptive field was attained. Then through a 
full connection layer to get the characteristic results via the Sigmoid activation function, the 
correlation between the channels was obtained and the model was constructed. The result 
achieved was used as a weight to multiply the input feature. 

 

 
Fig. 1. Structure diagram of YOLOv5-SE mechanism 
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2.1.3 CBAM mechanism 

CBAM (Convolutional Block Attention Module) is a typical type of attention mechanism. Its 
modules are enclosed in the red dashed box in Fig. 2. The core of the CBAM module includes 
the channel attention module in the green box and the spatial attention module in the blue box. 
A large number of experiments have proved that using channel attention first and then using 
spatial attention can achieve the best effect for network learning [21]. Using mean-pooling and 
max-pooling can effectively reduce the error rate, thereby obtaining a 1-2% improvement for 
the network and providing more detailed feature information. It is of great significance to the 
improvement of the network model, so this is currently the common combination method of 
CBAM. 

Adding the CBAM mechanism to the lightweight model can greatly improve the 
performance of the network, though it will increase the network complexity and depth to some 
extent. Nevertheless, judging from the final test results, the CBAM approach is very effective 
given that it can achieve a massive increase in accuracy at the small cost of time. 
For the CAM module in the CBAM mechanism, first the input H×W×C feature maps were 
subjected to mean-pooling and max-pooling respectively to obtain two 1×1×C feature maps, 
which were then successively sent to MLP. The number of neurons in the first layer of MLP is 
C/r, and the activation function is ReLU; the number of neurons in the second layer is C; the 
neural network of the two layers of MLP is universal. The features output by MLP were 
summed based on elementwise, and then the final channel attention feature was generated 
through the Sigmoid function. Finally, elementwise multiplication was performed between it 
and the input feature map to get the input features of Spatial attention. 

For the SAM module in the CBAM mechanism, its input is the output of CAM. First, 
mean-pooling and max-pooling were performed to obtain two H×W×1 feature maps, which 
were then subjected to channel splicing. After 7×7 convolution, the dimensionality was 
reduced to H×W×1. Next, Spatial attention feature was generated through Sigmoid function, 
and finally it was multiplied by the input of the module to obtain the final generated feature 
[22]. The following formulas are the weight coefficient of the output of channel attention 
mechanism and spatial attention mechanism respectively. 

 
c ( ) ( ( ool( )) ( ( )))M F MLP MaxP F MLP AvgPool Fς= +  (2) 

7 7( ) ( (( ( ); ( ))))xM F f MaxPool F AvgPool Fς ×=  (3) 
 

Among them, ς  is the Sigmoid operation, MaxPool  is the max-pooling, AvgPool  is the 
mean-pooling, ( )CM F  represents the weight coefficient of the output of channel attention 
mechanism, and ( )XM F   represents the weight coefficient of the output of spatial attention 
mechanism. Finally, the weight coefficient and the feature were multiplied together. 
Noteworthily, 7×7 represents the size of the convolution kernel. 
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Fig. 2. Structure diagram of YOLOv5-CBAM mechanism 

2.2 Loss function 

Loss function is a tool for measuring the quality of a network’s prediction result. This section 
elaborated the loss function of the YOLOv5 network. In addition, the loss function of the 
original network was improved, the improved loss function was described in detail, and each 
parameter of the loss function was explained and analyzed detailedly. 

YOLOv5 uses the Cross-Entropy Loss Function to calculate the loss of the class 
probability of the sample and the confidence score of the target. Meanwhile, it uses GIoU loss 
function as the loss of the bbox (bounding box). Compared with IoU [23] loss function, GIoU  
increases the penalty for misdetection. The greater the detection error, the severer the penalty. 
In the process of training, relatively sound detection results could be obtained for prediction 
boxes of different sizes. But when the prediction box and the ground truth box overlap, the 
effect of GIoU  would be the same as that of IoU . 
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The loss function of the YOLOv5 network in this paper modified in response to the above 
problems used CIoU  . Different from GIoU   which calculates the intersection and union 
between the ground truth box and the prediction box, CIoU  calculates the Euclidean distance 
between the center points of the ground truth box and the prediction box, so CIoU  can solve 
the problems appeared while using GIoU . There are three important factors in the predicted 
bbox, which are the distance between the center points of the ground truth box and the 
prediction box, the overlap area, and the aspect ratio. When the prediction box and ground 
truth box overlap, CIoU , with a larger loss value than GIoU , can better describe the current 
position information. CIoU   considers both the overlap area of the prediction box and the 
ground truth box and the distance between their center points. The consistency in the aspect 
ratio of the bounding box is another important geometric factor, and CIoU  can normalize the 
distance between the two center points, thus accelerating the convergence of the network. 
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1 CIoUCIoU IoU R= − +   (10) 
Among them, L  is the Cross-Entropy Loss Function, X represents the probability of 

the predicted sample, Y represents the label, X is the prediction box, and Y is the ground 
truth box. As shown in Fig. 3, no matter whether the X box and the Y  box intersect, the D

box can contain X and Y boxes at the same time. GIoU calculates the ratio of the area of D  
that is not covered by X Y∩  to the area of D . Then, the ratio of the intersection of X and Y  
to their union minus the ratio obtained above can be obtained. Like IoU , GIoU  can also be 
used as a distance. When X   and Y  do not intersect, IoU   is 0. The closer the ratio of 
| ( ) |

| |
D X Y

D
− ∪   to 0, the closer the value of GIoUL   to 1. CIoUR   is its penalty term formula, ρ  

represents the Euclidean distance between the center points of the two prediction boxes of X
and Y , b  represents the diagonal distance of the smallest closure area that can contain both 
X  and Y , α  is the balance ratio parameter, and υ  represents the similarity parameter that 
measures the length and width of the prediction box and the ground truth box. 

 

 
Fig. 3. The relationship between the rectangular boxes of X, Y, and D 

3. Training Process 

3.1 Training process of YOLOv5-SE 

Fig. 4 shows the flow chart of YOLOv5-SE framework training and the convolution 
parameters and number of channels for each layer. First, in the Backbone module, the number 
of channels of the input image was expanded, and then the convolution operation was used to 
extract the shallow features of the input image. Four convolution layers were used, each 
containing a BN layer and an activation function ReLU. The features output from the 
Backbone passed through the SE module. The SE module first performed a global average 
pooling on the input 512×512×40 feature map to obtain a 1×1×40 global receptive field. Then 
the correlation between channels was obtained and the corresponding model was built through 
a full connection layer and using the Sigmoid activation function. The results obtained were 
used as weights to perform the elementwise operation with the input features, which enabled 
the network to learn the features of the defect area with complex background color more deeply. 
The feature representation became more distinguishable, thus improving the overall training 
effect of the network and enhancing the effect of the identification of defect area. Next, the 
extracted features were input to the Neck module which adopted the FPN+PAN combination. 
FPN fused the high-level semantic features through up sampling with the low-level texture 
features from top to bottom. Then the localization features of PAN network from bottom to 
top were fused, so as to realize the fusion of the parameters of different detection layers, thus 
strengthening the network’s ability to fuse features. The fused features were up sampled and 
three feature maps with different dimensions were output. Finally, CIoU was used as the loss 
function of the bounding box and NMS non-maximum suppression was employed to identify 
and locate the defect area of the input image more accurately. 
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Fig. 4. Picture size and channel number of each layer of YOLOv5-SE 

3.2 Training process of YOLOv5-CBAM 

Fig. 5 shows the flow chart of YOLOv5-CBAM framework training and the convolution 
parameters and number of channels for each layer. First, in the Backbone module, the number 
of channels of the input image was expanded, and then the convolution operation was used to 
extract the shallow features of the input image. Four convolution layers were used. The 
features output by the Backbone module were input into the CBAM module, thus enabling the 
network to extract more distinguishable feature representation from the complex background 
color. The purpose of reducing information loss was achieved by feature fusion, and the 
features were then output to the next module. The CBAM module first passed through the 
channel attention module. Two feature maps were obtained after performing global average 
pooling and maximum pooling on the input features. Then elementwise operation was 
performed on the output features through the two-layer neural network of MLP. Another 
elementwise operation was performed between the generated features and the input feature 
through the Sigmoid activation function. Next, the obtained features were input into the spatial 
attention module for deeper learning. Global average pooling and maximum pooling were 
performed again on the input features, and then the obtained feature maps were subjected to 
channel splicing. Via 7×7 convolution operation, dimensionality reduction, and the Sigmoid 
activation function, the features were generated and subjected to the elementwise operation 
with the features generated by the channel attention module. The final generated features were 
obtained. After that, the extracted features were input to the Neck module, and the same 
FPN+PAN combination was used to process the features. However, unlike the previous 
process, at this point, before outputting the feature maps of different dimensions, the features 
of different dimensions were input into the channel attention module and the spatial attention 
module respectively for deeper learning and feature fusion, thus allowing the output feature 
maps with three different dimensions to carry more texture features and semantic features of 
defect areas. Finally, CIoU was used as the loss function of the bounding box and NMS non-
maximum suppression was employed to make its classification and positioning more accurate 
and improve the detection accuracy. 
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Fig. 5. Picture size and channel number of each layer of YOLOv5-CBAM 

3.3 Training and testing process 

This network process was mainly divided into two parts, namely the training of the defect 
detection network model and the testing of the defect data set. In the training process, we used 
0.937 momentum and 0.0005 loss attenuation. The initial learning rate was set to 0.01, and the 
Batch_Size was set to 4. The network constantly updated the model parameters during the 
training and the loss function also decreased in the process of back propagation.  

When the loss function reached the expected value or the convergence tended to 
equilibrium, the defect detection model training was completed and the trained model was 
saved. Then the images with defects were placed into the trained model for detection. The 
specific algorithm flow description is shown in Table 1. 

 
Table 1. Algorithm flow description 

Algorithm flow description 
Input： Defective Thangka data set with tags. 
Output：Trained Thangka defect detection model. 
Step 1： Input the preprocessed Thangka image into the network. 
Step 2： Judge whether the number of iterations exceeds the set epoch. If yes, go to Step 7; if 

not, go to Step 3. 
Step 3： Randomly extract training set data, and convolve the input image. 
Step 4： Match the learned features with the input tags to classify the defect features. 
Step 5： Judge whether the training image defect learning is completed. If yes, go to Step 6; if 

not, go to Step 3. 
Step 6： Update the loss parameter value and the parameter of the defect features. 
Step 7： Save the trained defect model. 
Step 8： Put the test image into the trained network model to detect the defect area. 
Step 9： Perform feature matching and feature classification on the test image. 
Step 10：Calculate the confidence level of the test image, and visualize the training process with 

tensorboard. 
Step 11：Output the image after detection. 
Step 12：End the process. 
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4. Experimental Results and Analysis 

4.1 Experiment preparation 
The hardware platform built in this experiment was: Intel(R)Core (TM) I9-10900K CPU, 32G 
memory, NCIDIA GeForce RTX 2070 graphics card. The software environment was: CUDA 
version 11.0, CUDNN version 8.0, Windows 10 operating system. Python 3.7 and PyTorch 
1.7.0 framework were adopted for data test, and the compiler pyCharm2020_1.2 _x64 was 
used. 

Because of the peculiarity and scarcity of Thangka images, there is no unified data set so 
far, and the existing Thangka images are not only limited in number, but also affected by 
various factors such as different degrees of damage, poor availability, and low resolution. 
Consequently, image collection and processing has become an important part of this 
experiment. The data used in this paper came from the Thangka pictures taken in Tibet. 
Thangka images with defects were selected from the acquired data set of 5277 Thangka images. 
The data set was divided into the training set and test set according to the ratio of 8:2 to train 
and test the network. Due to the special data set of this experiment and the small number of 
initial data, the training effect was not very obvious. Therefore, the data set was expanded by 
the method of data enhancement, which increased not only the number of data sets, but also 
the diversity of the training data, thereby making the data training achieve better results. 

This paper used the labeling tool of LabelImg to label the Thangka data sets and classify 
the defect area. There are five types of defect targets: fade, crack, dent, damage, and stain. 
Fade defect means that the pigment on the surface of the Thangka only falls off slightly without 
damaging the bottom plate; Crack defect indicates that there is a serious crack in the middle 
of the Thangka and it has seriously damaged the bottom plate; Dent defect means that the 
surface of the Thangka is concave due to external force, and it becomes uneven and incomplete; 
Damage defect indicates that not only the surface color of the Thangka falls off, but also its 
bottom plate is slightly damaged; Stain defect indicates that the surface of the Thangka is 
contaminated with soil, oil, rain stains, or other pigment that does not belong to the original 
image. The defect distribution of the test set is shown in Table 2. The left sample is listed as 
the defect sample type of the test set, and the right is the distribution of the defect sample in 
the test set. 

 
Table 2. Distribution of defect samples in the test set 

Sample All Fade Crack Dent Damage Stain 
N 576 210 187 30 107 42 

 

4.2 Comparison test 

4.2.1 Comparison of the effect of unexpanded data set 

Fig. 6 and Fig. 7 show the data analysis results obtained from the experiments of 3000 and 
6000 iterations before data expansion. 
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Fig. 6. Histogram of the effect of 3000 iterations  Fig. 7. The histogram of the effect of 6000 iterations 
 

As observed from Fig. 6, when the unexpanded data set was used, YOLOv5-SE 
performed better when the epoch iterated 3000 times. YOLOv5-CBAM also exceeded the 
original model in terms of precision, recall rate, and @ 0.5. Nevertheless, when the Relu 
activation function was used in the experiment, despite the improved accuracy and recall rate, 
its time cost was increased and the precision and recall rate failed to achieve expected 
improvement compared with the improved algorithm. Therefore, it was removed in the follow-
up comparison test. In terms of the time consumption of training, YOLOv5s as a lightweight 
network had a great speed advantage among the compared centralized algorithms. Compared 
with YOLOv5-CBAM, YOLOv5-SE increased the precision by 5.3% and 4%, and the recall 
rate by 0.5% and 0.4%. 

 
Table 3. Time consumption of unexpanded data set training 

Iterations YOLOv5s YOLOv5-SE YOLOv5-CBAM YOLOv5-CBAM-
Relu 

3000 2.378 3.431 4.267 4.301 
6000 4.756 7.94 9.125 9.212 

 
As shown in Fig. 7, when the epoch iterated 6000 times, the performance of YOLOv5-

CBAM in terms of accuracy and recall rate surpassed that of YOLOv5-SE, and its @0.5 was 
also improved to a certain extent compared with the original model. However, with regard to 
time consumption, YOLOv5s still had great advantages. YOLOv5-CBAM training took nearly 
twice as long as the YOLOv5s training. Compared with YOLOv5-CBAM, YOLOv5-SE 
improved the precision by 0.7% and 3.1%, and the recall rate by 0.1% and 0%. 

4.2.2 Comparison of the effect of expanded data set 

 
 Fig. 8. Histogram of the effect of 1000 iterations   Fig. 9. Histogram of the effect of 3000 iterations 
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Fig. 10. Histogram of the effect of 6000 iterations  Fig. 11. Histogram of the effect of 10000 iterations 
 

Table 4. Time consumption and FPS of expanded data set training 

 Iterations YOLO
v3 

YOLO
v5s 

YOLO
v5s-SE 

YOLOv5-
CBAM 

CBAM-
ReLU 

YOLO
v5l 

 1000 8.74 1.2105 1.567 1.756 1.76 4.38 
Time(h) 3000 26.21 3.6315 4.703 5.2685 5.273 13.14 

 6000 52.403 7.263 9.406 10.537 10.546 26.28 
 10000 82.4 12.105 15.249 16.958 44.3 82.4 
 1000 6.7 31.88 28.95 24.55 23.56 8.74 

FPS 3000 6.7 31.88 28.95 24.55 23.56 8.74 
 6000 6.7 31.88 28.95 25.23 23.56 8.74 
 10000 6.7 31.00 28.44 25.23 8.74 6.7 

 
As can be observed from Fig. 8, after the data set was expanded, the precision and recall 

rate of the improved network and other networks were greatly increased, which fully shows 
that the expansion of the data set had a very important impact on the prediction of network. 
When the epoch iterated 1000 times, YOLOv5l significantly outperformed other network 
models in terms of the detection accuracy. While the prediction effect of YOLOv3 was second 
only to YOLOv5l, and its recall rate was much better than that of other networks. From the 
comparison of @0.5, the average precision of YOLOv3 and YOLOv5l was also slightly higher 
than that of the original model and the improved network model. However, in terms of training 
time, that of YOLOv3 network was equivalent to the sum of that of other networks; YOLOv5s 
and other improved models had an absolute advantage in this aspect. From the perspective of 
the number of processed picture frames, that of YOLOv5l was 8.74, which was only slightly 
better than YOLOv3.The detection precision, recall rate, and detection speed of YOLOv5-SE 
and YOLOv5-CBAM were relatively balanced. Compared with YOLOv5-CBAM, YOLOv5-
SE improved the precision by 11.24% and 11.63%, and the recall rate by 4.1% and 4.55%. 

Fig. 9 shows that when the epoch iterated 3000 times, the detection accuracy and recall 
rate of YOLOv5l were better, closely followed by YOLOv5-CBAM. The detection effect of 
other network models was not very different. Nonetheless, although the precision and recall 
rate of YOLOv3, YOLOv5-SE, and YOLOv5-CBAM were slightly inferior to those of 
YOLOv5l, their training speed was much higher than that of YOLOv5l. Specifically, the speed 
of YOLOv5s was only a quarter of that of YOLOv5l, and one-eighth of that of YOLOv3. In 
terms of FPS, YOLOv5s was far faster than YOLOv3 and YOLOv5l. Compared with 
YOLOv5-CBAM, YOLOv5-SE improved the precision by 3.0% and 4.21%, and the recall 
rate by 4.4% and 4.94%. 
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According to Fig. 10, when the epoch iterated 6000 times, YOLOv5-CBAM had the best 
detection precision and recall rate. Specifically, its precision was more than 90%, which was 
the most prominent in the comparison experiment. Its @0.5 data also far outperformed that of 
others. In contrast, the precision of YOLOv5s was much inferior to that of other models. From 
the training time and FPS, YOLOv5s and the improved model still had much greater 
advantages than YOLOv3 and YOLOv5l. Compared with YOLOv5-CBAM, YOLOv5-SE 
increased the precision by 8.95% and 12.87%, and the recall rate by 3.96% and 5.2%. 

Fig. 11 reveals that when the epoch iterated 10,000 times, the detection precision and 
recall rate of YOLOv5l and YOLOv3 were relatively good, and the data of @0.5 also had a 
great advantage in the comparison experiment. But the shortcomings were also obvious. 
Regarding the detection speed and FPS data, the time cost of YOLOv3 training was too high, 
and its FPS value was also the lowest among the five groups of comparisons. While the time 
cost of YOLOv5l training was half that of YOLOv3, it was still too high, being 3.6 times that 
of YOLOv5s; and its FPS was less than one-third of that of YOLOv5s. However, YOLOv5-
CBAM’s detection precision, speed, and recall rate were relatively balanced. Although its 
training time cost was higher than that of the original model, its accuracy and recall rate were 
greatly improved compared with the original model. Compared with YOLOv5-CBAM, the 
precision of YOLOv5-SE was increased by 0.4% and 2.7%, and the recall rate by 5.3% and 
6.7%. 

The experimental results show that the in terms of the precision, recall rate, and @0.5, 
the two networks improved based on YOLOv5s greatly outperformed the original YOLOv5s 
model, thus capable of extracting features of defect Thangka images with complex background 
more accurately. However, the addition of SE and CBAM mechanisms increased the depth of 
the network models, which sacrificed a certain speed advantage to improve the effect of 
detecting defects. This made the training time cost and FPS inferior to those YOLOv5s, but 
their precision and recall rate were close to those of YOLOv3 and YOLOv5l. On the other 
hand, their training time cost and FPS were greatly improved compared to YOLOv3 and 
YOLOv5l. The improved network models had the speed of YOLOv5s and also improved the 
defect detection accuracy and recall rate. 

 

4.3 Comparison of the detection effect concerning the five types of defects 

Table 5 below displays the comparative experimental data concerning the detection of 
the five types of defects, and the values in bold type denote the data of the improved networks. 

 
Table 5. Detection data concerning Fade defect (Defect 0) 

Iterations Fade P R map@0.5 map@0.5:0.95 

6000 

YOLOv3 0.857 0.895 0.844 0.653 
YOLOv5s 0.812 0.881 0.859 0.539 

YOLOv5-SE 0.828 0.900 0.846 0.590 
YOLOv5-

CBAM 0.858 0.890 0.850 0.588 

10000 

YOLOv5s 0.834 0.876 0.816 0.449 
YOLOv5-SE 0.831 0.881 0.830 0.514 

YOLOv5-
CBAM 0.856 0.890 0.839 0.532 

YOLOv5l 0.861 0.914 0.855 0.589 
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From Table 5 we could see that for the comparison of the detection precision concerning 
the Fade defect, YOLOv5l had the best effect, followed by YOLOv5-CBAM and then 
YOLOv3. In terms of the recall rate, YOLOv5l performed the best, successively followed by 
YOLOv5-SE and YOLOv3. But the processing speed of YOLOv5-CBAM was 24.55 frames 
per second, much higher than that of YOLOv5l (8.74 frames per second) and YOLOv3 (6.7 
frames per second). 

 
Table 6. Detection data concerning Crack defect (Defect 1) 

Iterations Crack P R map@0.5 map@0.5:0.95 

6000 

YOLOv3 0.785 0.850 0.720 0.504 
YOLOv5s 0.732 0.556 0.547 0.239 

YOLOv5-SE 0.789 0.663 0.662 0.317 
YOLOv5-

CBAM 0.780 0.610 0.606 0.324 

10000 

YOLOv5s 0.754 0.444 0.515 0.183 
YOLOv5-SE 0.748 0.588 0.554 0.237 

YOLOv5-
CBAM 0.755 0.594 0.585 0.276 

YOLOv5l 0.737 0.751 0.630 0.326 
 
Table 6 illustrates that concerning the Crack defect, YOLOv5-SE achieved the best 

precision, followed by YOLOv3 and then YOLOv5-CBAM. With regard to the recall rate, the 
top three best-performed models were YOLOv3, YOLOv5l, and YOLOv5-SE successively. 
In addition, YOLOv5-SE processed 28.95 frames per second; YOLOv5-CBAM processed 
24.55 frames per second, much better than YOLOv3 (6.7 frames per second). 

 
Table 7. Detection data concerning Dent defect (Defect 2) 

Iterations Dent P R map@0.5 map@0.5:0.95 
 
 

6000 

YOLOv3 0.930 0.367 0.365 0.286 
YOLOv5s 0.693 0.267 0.335 0.167 

YOLOv5-SE 0.880 0.333 0.349 0.232 
YOLOv5-

CBAM 0.950 0.364 0.365 0.235 

 
 

10000 

YOLOv5s 0.858 0.267 0.324 0.143 
YOLOv5-SE 0.886 0.333 0.340 0.168 

YOLOv5-
CBAM 0.934 0.364 0.254 0.192 

YOLOv5l 0.948 0.361 0.365 0.204 
 
As can be seen from Table 7, the precision of YOLOv5-CBAM for the Dent defect was 

the highest, followed by YOLOv5l. However, the recall rate and precision for this type of 
defect were not high in general. The reason is that the data sample of this type of defect 
accounted for a too small percentage of the overall defect sample. The comparison test shows 
that the recall rate of YOLOv3 was the highest, followed by YOLOv5-CBAM and then 
YOLOv5l. The processing speed of YOLOv5-CBAM was 24.55 frames per second, much 
higher than that of YOLOv5l (8.74 frames per second). 
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Table 8. Detection data concerning Damage defect (Defect 3) 
Iterations Damaged P R map@0.5 map@0.5:0.95 

 
 

6000 

YOLOv3 0.903 0.860 0.892 0.696 
YOLOv5s 0.869 0.822 0.829 0.501 

YOLOv5-SE 0.908 0.828 0.835 0.572 
YOLOv5-

CBAM 
0.943 0.822 0.875 0.561 

 
 

10000 

YOLOv5s 0.879 0.757 0.801 0.419 
YOLOv5-SE 0.925 0.811 0.840 0.517 

YOLOv5-
CBAM 

0.923 0.832 0.865 0.519 

YOLOv5l 0.931 0.813 0.854 0.578 
 
As can be observed from Table 8, YOLOv5-CBAM had the best precision concerning 

the Damage defect, followed by YOLOv5-SE and then YOLOv3. For the recall rate, YOLOv3 
performed the best, followed by YOLOv5-CBAM and then YOLOv5-SE. However, 
YOLOv5-SE processed 28.95 frames per second; YOLOv5-CBAM processed 24.55 frames 
per second, much better than YOLOv3 (6.7 frames per second). 

 
Table 9. Detection data concerning Stain defect (Defect 4) 

Iterations Stain P R map@0.5 map@0.5:0.95 
 
 

6000 

YOLOv3 0.926 0.593 0.593 0.535 
YOLOv5s 0.760 0.619 0.589 0.425 

YOLOv5-SE 0.908 0.619 0.589 0.510 
YOLOv5-

CBAM 
0.928 0.619 0.606 0.487 

 
 

10000 

YOLOv5s 0.906 0.619 0.577 0.441 
YOLOv5-SE 0.861 0.619 0.591 0.434 

YOLOv5-
CBAM 

0.890 0.619 0.598 0.469 

YOLOv5l 0.925 0.619 0.592 0.473 
 
It can be seen from Table 9 that YOLOv5-CBAM achieved the best precision for the 

Stain defect, followed by YOLOv3 and then YOLOv5l. Regarding the recall rate, YOLOv3 
was the lowest, while that of the rest of the networks were the same. However, the processing 
speed of YOLOv5-CBAM was 24.55 frames per second, much higher than that of YOLOv5l 
(8.74 frames per second) and YOLOv3 (6.7 frames per second). 

According to the above comparison tests, from the perspective of detection precision, 
YOLOv5-CBAM performed best on Defects 2, 3, and 4, YOLOv5-SE performed best on 
Defect 1, and YOLOv5l performed best on Defect 0. The precision of the improved networks 
was comparable to that of YOLOv5l and YOLOv3. From the perspective of detection speed 
and training time cost, compared with YOLOv5, YOLOv5-SE, and YOLOv5-CBAM, 
YOLOv3 and YOLOv5l greatly increased the detection speed and deduced the training time. 
Therefore, the improved networks achieved a relative balance in terms of precision and speed. 
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4.4 Comparison of the visual effect 

4.4.1 Comparison of the visual effect of different bbox loss functions 

Fig. 12. Comparison of images of different bbox loss functions 
 

According to Fig. 12, the detection effect of YOLOv5-CBAM using GIoU as the bbox 
loss function was not good, and it was highly prone to miss detection and false detection. As 
shown in the fifth figure of GIoU, the yellow box area on the image suffered from severe loss 
of defect features, and the corresponding defect area was not detected. By comparison, CIoU 
detection not only greatly reduced the missed detection area, but also had a very low 
probability of false detection. The yellow defect area of several other images reflected miss 
detection to varied degrees. According to Table 10, when iterating 6000 times, the detection 
precision and recall rate of CIoU were slightly improved compared with those of GIoU. 

 
Table 10. Detection effect of GIoU and CIoU after 6000 iterations 

 Precision Recall map@0.5 map@0.5:0.95 
CBAM-GIoU 0.862 0.656 0.647 0.427 
CBAM-CIoU 0.902 0.681 0.660 0.439 

 
4.4.2 Comparison of the visual effect of different defect detection algorithms 

Fig. 13 shows an example of defect detection results of Thangka data with the same 
defects using different algorithms. We set the detection anchor point frame score threshold to 
0.4; when the score of the anchor point frame was greater than 0.4, we output the sample as a 
positive sample; when it was less than 0.4, the sample was classified as a negative sample. 
Consequently, a large number of negative sample area proposals could be omitted, thereby 
saving time and cost. The following is the comparison result of the experimental images. 

 

(A) 

      

(B) 

      

 

 

GIoU 

      
 

 

CIoU 
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(C) 

      

(D) 

      

 (E) 

      

(F) 

      

(G) 

      

(H) 

      
 Original image YOLOv5s YOLOv5-SE YOLOv5-

CBAM YOLOv5l YOLOv3 

Fig. 13. Comparison of different algorithms for defective images 
 

For Defect 0 marked in the red area of the original image of Group A, only YOLOv5-SE 
detected the defect, the IoU of which was 0.46; for Defect 0 in the yellow area, YOLOv5s and 
YOLOv5-CBAM succeeded in the detection, while YOLOv5-SE, YOLOv5l, and YOLOv3 
failed; YOLOv5l and YOLOv3 did not detect Defect 0 in the red area and the yellow area 
accurately. 

In the green marked area of the original image of group B, YOLOv5s failed to recognize 
Defect 3; Defect 3 in the red area was not recognized by the YOLOv5s and YOLOv5-SE 
models; Defect 3 in the yellow area was recognized by YOLOv5-SE, but not by YOLOv5l and 
YOLOv5l; in the blue area, all models identified the defect, and YOLOv5-CBAM achieved 
the best performance. 

Only YOLOv3 did not recognize Defect 3 in the blue box in group C; at the same time, 
YOLOv5l misrecognized Defect 3 in the blue box as Defect 1. 

In group D, only YOLOv5-SE and YOLOv5-CBAM accurately detected Defect 0 in the 
yellow box, indicating that when the attention mechanism module was added, the model could 
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better learn the characteristics of the target area, thereby effectively identifying the defect area. 
Defect 3 in the black box was only accurately detected by YOLOv5l; Defects 1 and 3 in the 
orange box were also effectively identified by the five types of networks. 

Defect 3 in the orange box in the original picture of Group E was relatively obvious, so 
all the network models recognized it; and for Defect 1 in the black box, YOLOv5s, YOLOv5-
SE, and YOLOv5-CBAM all failed to recognize. 

Only YOLOv5-CBAM accurately detected Defect 0 in the orange-yellow area of the 
original image of Group F. Compared with other models, YOLOv5-CBAM was able to 
perform detailed detection due to the addition of the CBAM module, which further illustrated 
that the improved model greatly enhanced the network. 

Since the image in Group G was the most damaged, the detection can better reflect the 
effect of the models. For Defect 4 in the orange box and the black box, only YOLOv5-CBAM 
accurately detected it; for Defect 4 in the yellow box, YOLOv5-SE and YOLOv5l failed to 
completely detected it, missing the lower part of the defect; Defect 4 in the green box of the 
original image was not detected by YOLOv5s and YOLOv3. 

The picture in Group H suffered from a continuous defect. For Defect 1 in the red box in 
the original picture, only YOLOv5-CBAM recognized it, while the other parts of the defect 
were completely recognized by all models. 

Judging from the overall test results, the network models with SE and CBAM modules 
showed better learning ability, though sacrificing the speed and time to some extent. In specific, 
the networks with CBAM module adopted the combination of using channel attention first and 
then spatial attention, thus capable of learning more fully the small features of the defect area 
and detecting the characteristics of defects under the conditions of complex background. They 
had obvious advantages in the comparison of Groups C, E, F, G, and H. Furthermore, 
compared with the original YOLOv5l and YOLOv3 models, no misdetection occurred in the 
two improved network models, reflecting their higher reliability. The two improved network 
models also had advantages in terms of speed and training time compared with YOLOv3 and 
YOLOv5l. Compared with the original YOLOv5s network, although the improved networks’ 
detection speed was slightly slower and training time was slightly higher, their accuracy and 
recall rate were better. In general, the improved networks had their own outstanding features 
and advantages in the comparison test. They could learn the advantages of other networks and 
overcome their shortcomings in the meanwhile, thus realizing excellent performance in terms 
of both the speed and precision. 

4.5 Comparison of model size 
Table 11. Comparison of the model size when the epoch iterated 10000 times 

Network model YOLOv3 YOLOv5s YOLOv5-
SE 

YOLOv5-
CBAM 

YOLOv5l 

Model size（MB） 117.75 13.76 14.32 16.19 89.44 
 
From Table 11 we could see that when the epoch iterated 10,000 times, the model trained 

by the YOlOv3 network was of the largest size, reaching 117.75 MB, while the model trained 
by the YOLOv5l network was also as large as 89.44 MB. In contrast, the model sizes of 
YOLOv5s, YOLOv5-SE, and YOLOv5-CBAM were only a dozen of MB, with the largest 
being 16.19 MB for YOLOv5-CBAM network model. These numbers were much smaller than 
the size of the other two network models, showing their huge storage space advantage 
compared to the other two models. 
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5. Conclusion and Future Work 

Aiming at resolving the problems of difficult feature extraction and low detection 
accuracy concerning defective Thangka images with complex background color, this paper 
has proposed an improved YOLOv5 model based on attention mechanism to detect the defect 
area in Thangka images. The model integrated SE and CBAM mechanisms respectively, and 
thus obtained two improved algorithms, YOLOv5-SE and YOLOv5-CBAM, which have 
effectively solved the problems encountered in Thangka image defect detection. 

The experimental results have shown that the improved defect detection models can 
accurately extract the features of the defect area from images with complex background color 
and detect multiple defects simultaneously. They have achieved improved detection accuracy 
and recall rate without greatly increasing the time cost, and their detection speed has been only 
slightly slower than that of YOLOv5s. However, compared with the speed of YOLOv5l and 
YOLOv3, the improved networks have had many advantages, and their precision has been far 
from inferior to that of other models. YOLOv5-SE has achieved an improvement of 8.95% in 
detection accuracy, and YOLOv5-CBAM an improvement of 12.87%. The improvement in 
accuracy of YOLOv5-CBAM has been more obvious than that of YOLOv5-SE. In general, 
the real-time performance of both the improved networks has been effectively enhanced, 
thereby capable of effectively solving the problems regarding defect extraction of Thangka 
images. 
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